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Abstract Amplitude-Modulation Frequency-
Modulation (AM-FM) decompositions represent images

using spatially-varying sinusoidal waves and their

spatially-varying amplitudes. The model uses different

scales and bandpass filters to characterize the wide range
of frequencies that may be present in an image. In

the past few years, as the understanding of its the-

ory advanced, AM-FM has been used in a series of

medical imaging problems ranging from ultrasound to

retinal image analysis, yielding excellent results. This
paper summarizes the theory of AM-FM and some of

its main medical imaging applications: carotid artery

ultrasound, pneumoconiosis, diabetic retinopathy, and

age-related macular degeneration.

Keywords Multidimensional AM-FM methods ·

digital image processing · medical imaging.

1 Introduction

In the field of computer aided detection and diagnostics

(CAD), recent advances in image processing techniques

have brought a wide array of applications into the field.
Many existing CAD methods rely on fixed basis func-

tions based on wavelet decompositions [1] and Gabor fil-
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ters [2]. Amplitude-Modulation Frequency-Modulation
(AM-FM) methods [3–6] represent an emerging tech-

nique that shows great promise in this area.

Multi-dimensional AM-FM models and methods pro-
vide us with powerful, image and video decompositions

that can effectively describe non-stationary content.

They represent an extension to standard Fourier anal-

ysis, where we allow both the amplitude and the phase

functions to vary spatially over the support of the im-
age, following changes in local texture and brightness.

To explain some of the advantages of AM-FM meth-

ods, we begin with the basic AM-FM model. In the 2D
model, we expand an input image I(x, y) into a sum of

AM-FM harmonics using:

I(x, y) =

M
∑

n=1

an(x, y) cosϕn(x, y), (1)

where an(x, y) denote slowly-varying instantaneous am-

plitude (IA) functions, ϕn(x, y) denote the instanta-

neous phase (IP) components, and n = 1, 2, . . . , M in-

dexes the different AM-FM harmonics. In (1), we have
that the n-th AM-FM harmonic is represented by

an(x, y) cosϕn(x, y).

With each phase function, we associate the instanta-
neous frequency (IF) vector field defined by ∇ϕn(x, y).

Here, the AM-FM demodulation problem is defined as

one of determining the IA, IP, and IF functions for any

given input image. We now have a number of different

methods for computing AM-FM decompositions.

AM-FM decompositions provide for physically mean-

ingful texture measurements. Usually, significant tex-

ture variations are captured in the frequency compo-
nents. For single component cases, IF vectors are or-

thogonal to equi-intensity lines of an image, while the

IF magnitude provides a measure of local frequency
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content. In (1), by using AM-FM components from dif-

ferent scales, we can produce IF vectors from different

scales, at a pixel-level resolution [4, 5].

Since AM-FM texture features are provided at a

pixel-level resolution, AM-FM models can be used to
segment texture images that are very difficult to model

with the standard brightness-based methods [7]. On the

other hand, using just histograms of the IF and IA,

we can design effective content-based image retrieval
systems using very short image feature vectors [8].

In summary, the advantages of AM-FM methods in-

clude [9]: (i) they provide for a large number of physi-

cally meaningful texture features, over multiple scales,

at a pixel-level resolution, (ii) we can reconstruct the
image from the AM-FM decompositions, (iii) based on

the target application, we can design for different AM-

FM decompositions using different frequency coverage

and (iv) we have the recent development of very robust
methods for AM-FM demodulation (see some recent

examples in [4]).

We can extend AM-FM decompositions for repre-

senting videos using [10]:

I(x, y, t) =

M
∑

n=1

an(x, y, t) cosϕn(x, y, t), (2)

where each AM-FM function has been extended to be

a function of both space and time. The original phase-

based modeling approach was provided by Fleet and
Jepson in [11] and was recently extended by Murray et

al. in [10, 11].

The comparison between an AM-FM reconstruction

and the original image provides us with a method to
better understand what AM-FM is measuring. For

continuous-space image decompositions, AM-FM recon-

struction examples can be found in [12], while [4, 5]

give several recent, robust multi-scale examples for both

images and videos. AM-FM Transform examples were
shown in [13], while multidimensional orthogonal FM

transforms were demonstrated in [14].

An early example of the use of frequency-domain

filtering to target a particular application can be found
in the fingerprint examples in [15]. More recently, Ra-

machandran provided a tree-growth application, where

inter-ring spacing was used to design filterbanks that

cover a specific part of the spectrum, so as to recover

tree ring and tree growth structure from very noisy im-
age inputs [16]. For general images, Gabor filterbank

approaches were investigated by Havlicek in [3]. Simi-

larly, for general images and videos, Murray introduced

dyadic, multiscale decompositions in his dissertation
[4].

Alternatively, AM-FM estimates can be obtained

using an Energy Separation Algorithm (ESA) as de-

scribed in [17–19]. Both ESA and Hilbert-based meth-

ods share the use of a filterbank prior to AM-FM de-

modulation. Furthermore, both methods extract esti-

mates from a dominant component. For ESA, the dom-

inant component is selected based on an energy crite-
rion. In QEA, the dominant component is often selected

based on IA estimates. In this article, we will only pro-

vide details for the Hilbert-based methods focusing on

the accurate results presented in [5].

The methods Section 2 describes the theory behind

AM-FM and some of the post-processing and classifica-
tion techniques used. Results are presented for several

applications in Section 3. Finally, conclusions and fu-

ture work are presented on Section 4.

2 Methods

2.1 AM-FM methods

We consider multi-scale AM-FM representations, under

least-square approximations, for 2D signals (images)
given by

I(x, y) ≃
M
∑

n=1

an(x, y) cosϕn(x, y), (3)

where n = 1, 2, . . . , M denote different scales [4, 5]. In

(3), a continuous image I(x, y) is a function of a vector
of spatial coordinates (x, y). A collection of M differ-

ent scales are used to model essential signal modulation

structure. The amplitude functions an(·) are always as-

sumed to be positive.

AM-FM models non-stationary image content in

terms of its amplitude and phase functions [6]. The

aim is to let the frequency-modulated (FM) compo-
nents cosϕn(·) capture fast-changing spatial variability

in the image intensity. For each phase function ϕn(·)

we define the instantaneous frequency (IF), ∇ϕn(·), in

terms of the gradient. We have:

∇ϕn(x, y) =

(

∂ϕn

∂x
(x, y),

∂ϕn

∂y
(x, y)

)

. (4)

The instantaneous frequency vector ∇ϕn(·) can vary

continuously over the spatial domain of the input signal.

The basic, Hilbert-based AM-FM demodulation sys-
tem is given in Figs. 1 and 2. First, the real-valued in-

put signal is “analytically” extended by removing all

negative frequency components. The effect of this op-

eration is to create a complex-valued signal of the form:
a(x, y) exp[jϕ(x, y)]. We then use a collection of band-

pass filters to isolate the individual AM-FM compo-

nents [3].
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The basic assumption here is that different AM-FM

components will be picked up by different bandpass fil-

ters, at the same image region. In other words, given

any local image region, the assumption is that the cor-

responding AM-FM components will be separated by
the use of different filters in the filterbank.

Given the digital input image I(k1, k2) (where k1

and k2 are the discrete versions of x and y, respec-
tively), we first apply a partial Hilbert transform to

form a 2D extension of the 1D analytic signal: IAS(k1, k2).

This 2D extension is processed through a collection of

bandpass filters (to be described in the subsection 2.2)
within the desired scale. Each processing block will pro-

duce the instantaneous amplitude, the instantaneous

phase, and the instantaneous frequencies in both x and

y directions.

For each pixel (pixel-level approach) we select the

AM-FM demodulation estimates from the bandpass fil-

ter that produces the largest instantaneous amplitude

estimate (dominant component analysis, DCA). Hence,
the algorithm adaptively selects the estimates from the

bandpass filter with the maximum response. This ap-

proach does not assume spatial continuity, and allows

the model to quickly adapt to singularities in the input
signal (both high and low frequency changes).

For any single-scale, the IA and the IP are estimated

using [3] â(k1, k2) = |ÎAS(k1, k2)| and ϕ̂(k1, k2) =

arctan
(

imag(ÎAS(k1, k2))/ real(ÎAS(k1, k2))
)

,

respectively, with ÎAS(k1, k2) = I(k1, k2)+jH2d[I(k1, k2)],

where H2d denotes a two-dimensional partial Hilbert

transform operator.

For robust IA and IF estimations, we use a vari-

able spacing, local linear phase (VS-LLP) method as

described in [4,5]. Here, for estimating the first compo-

nent, we generate four estimates using:

ϕ̂1(k1, k2) =

1

n1

arccos

(

ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)

2ĪAS(k1, k2)

)

, (5)

where ĪAS(k1, k2) = ÎAS(k1, k2)/|ÎAS(k1, k2)|, n1 rep-

resents a variable displacement n1, from 1 to 4. VS-
LLP produces the most accurate of the four estimates

by considering the condition number of the arccos(·)

function [4, 5]. The approach is similar for the second

component direction. It turns out that VS-LLP reduces
to the earlier method of Quasi-Eigenfunction Approxi-

mation (QEA) for the special case when n1 = n2 = 1

(see [3] for QEA).

(a) (b)

Fig. 2 Four-scale filterbank used. (a) Complete frequency spec-
trum of the filterbank. (b) Zoom on the low frequency bandpass
filters.

2.2 Filterbank Design

For computing the AM-FM estimates, we need to iso-

late the AM-FM components from (3) using a multi-

scale filterbank. Here, the basic idea is to isolate dif-

ferent AM-FM components over different frequencies
(see [20] for details). Fig. 2 (a) depicts the frequency

support for a dyadic filterbank decomposition.

In Fig. 2, the low pass filter (LPF, with label number

1) has frequency support in [−π/16, π/16] radians for

both the x and y directions. The filters in the highest

frequencies (filters from 2 to 7 in Fig. 2), have a band-
width of π/2 for both x and y directions. The band-

width is decreased by a factor of 0.5 for each added

scale. In Fig. 2 (b), we provide a closeup that shows

the low frequency filters.

We define the scales using a collection of bandpass

filters as: (i) LPF (lowpass filter), (ii) VL (very low fre-
quencies), (iii) L (low frequencies), (iv) M (medium fre-

quencies) and (v) H (high frequencies) as given in [4].

When the structures are well defined in sizes, the mea-

surements can be related with specific instantaneous
wavelengths described in number of pixels [21, 22].

For example, for classifying lung opacities in pneu-
moconiosis (to be fully described in subsection 3.2), the

correspondence between opacity size and instantaneous

frequencies using eleven different combinations of scales

(CoS) is shown in Table 1. The pneumoconiosis im-
ages that were analyzed in the study have a resolution

of 300dpi. This resolution means that along 0.5mm we

have 6 pixel samples. From the ILO standard [23], the

rounded opacities labeled as p, q and r, are in the sizes

up to 10mm. With the knowledge of the sizes, we can
relate the lengths with the corresponding frequencies.

In Table 2 we summarize these relationships. Based on

the frequency ranges for each rounded opacity type, we

set up the cut-off frequencies of the bandpass filters to
fit the opacities in them by each scale. Then, we design

our four-scale filter-bank such that each scale will be

related with the frequency ranges described in Table 2.
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Fig. 1 Block diagram of the 2D multi-scale AM-FM demodulation. Dominant AM-FM components are selected over different image
scales. The bandpass filter selector (upper left) is used to define the bandpass filters that correspond to each scale. The dominant
AM-FM component is selected using the maximum amplitude at every pixel (see lowest block).

Table 1 Combinations of scales used for computing the domi-
nant AM-FM feature parameters.

CoS* Scales used CoS* Scales used

1 VL, L, M, H 7 LPF, VL

2 LPF 8 VL, L

3 VL 9 L, M

4 L 10 M, H

5 M 11 H

6 LPF, VL, L, M, H

CoS
*
: Combination of Scales.

Table 2 Relationship among ILO standard grades for rounded
opacities and the size in mm, size in pixels and range in frequency.
Relationships are based on a scanning rate of 12 pixels per mm.
Frequency range refers to the cut-off frequencies that can be used
to characterize an opacity [21].

Type of
rounded
opacities

Range in
mm

Range in
pixels

Range in
lowest fre-
quency con-
tent

p Up to 1.5 Up to 18 [π/9, π]

q 1.5 - 3 18 - 36 [π/18, π/9]

r 3 - 10 36 - 120 [π/36, π/18]

2.3 Post-processing Methods

The AM-FM estimates produced with the methods de-

scribed in the previous subsections can be improved for

better classification purposes. In this subsection, we de-

scribe first how the AM-FM estimates are encoded as
histograms for a region or image. Second, we present

the morphology processing applied as part of the post-

processing methods.

2.3.1 Histograms processing

For each of the 11 combinations of scales (see Table

1), we create a 96-bin feature vector that contains the

AM-FM histograms. Each AM-FM histogram has the

information of (32-bin each): (i) the IA, (ii) the IF mag-
nitude and (iii) the IF angle. Thus, each image produces

11 different feature vectors, each one corresponding to

one of the 11 different CoS.

Since the AM-FM estimates of neighboring pixels

could be affected by noisy estimates, a 9×9 median filter

is applied to the output of the IA and IF estimates (see
[4, 5, 12]). Median filtering has the effect of smoothing

AM-FM estimates.

Due to the ambiguity of the instantaneous frequency

vectors (coming from cosϕ(k1, k2) = cos(−ϕ(k1, k2))),

we map the IF estimates to two frequency quadrants:

– Instantaneous frequencies ∂ϕn

∂x (x, y) ≥ 0 and
∂ϕn

∂y (x, y) ≥ 0 are kept as they are.

– Instantaneous frequencies ∂ϕn

∂x (x, y) ≥ 0 and
∂ϕn

∂y (x, y) < 0 are kept as they are.
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– Instantaneous frequencies ∂ϕn

∂x (x, y) < 0 and
∂ϕn

∂y (x, y) < 0 are mapped to |∂ϕn

∂x (x, y)| and

|∂ϕn

∂y (x, y)|.

– Instantaneous frequencies ∂ϕn

∂x (x, y) < 0 and
∂ϕn

∂y (x, y) ≥ 0 are mapped to |∂ϕn

∂x (x, y)| and

−|∂ϕn

∂y (x, y)|.

Then, the IF histograms are computed.
For the IF angle, given by

arctan
(

∂ϕn

∂y (x, y)/∂ϕn

∂x (x, y)
)

, we center the histogram

around the maximum value using:

[h] ← histogram (IF angle using l bins) {Where h
is a column vector.}

H ← [hhh]. {Triplicate version of h.}

i← Location of the maximum value ofh.

h← Hl+i−l/2+1:l+i+l/2.

As last step, all the computed histograms (IA, IF

magnitude and IF angle) are normalized such that the

cumulative sum of each one is equal to 1. Thus, the bins
will now correspond to PDF estimates.

2.4 Partial Least Squares Classification

Partial Least Squares (PLS) is a linear regression method

that has been used to create a classifier using the AM-
FM features extracted from medical images. The re-

gression problem is given by

y = Xβ + ε, (6)

where y is a n×1 vector of the classification variables, X

is a n×p matrix of the extracted AM-FM features, β is a

p×1 vector of regression weights, and ε is a n×1 vector

of residuals. The least squares solution to estimating β
is given by the normal equations β = (XT X)−1(XT y).

In our case, we have much more features than im-

ages (p < n), and AM-FM features in X are highly cor-

related. Thus, XT X will be singular or nearly singular

and a unique solution to the normal equations does not
exist. PLS reduces X to a lower dimensional subspace

(k ≪ p). The first step is to factor X as X = TL, where

T is an orthogonal n × k matrix of T -scores and L is

a k × p matrix of factor loadings. The T -scores matrix
are used to find a threshold for a classifier [24].

2.5 Morphological segmentation

AM-FM features can also be used for image segmenta-

tion. A simple Bayesian classification scheme based on
the IA and IF magnitude was demonstrated in [7].

The segmented AM-FM regions can be very noisy.

Segmentation region denoising is achieved via the use of

an alternating sequential filter (ASF) [25]. We assume

that the noise in the segmented image is due to small

structural components that do not belong to the abnor-

mal regions. Under this assumption, it can be shown

that the optimal morphological filter will be an ASF
defined by:

M = (((((((IS ◦B) •B) ◦ 2B) • 2B) . . .) ◦ nB) • nB) ,

(7)

where: IS is the binary segmented image, B is the struc-

tural element; nB the result of n dilations of B by itself;

◦ the standard open operation and • the standard close

operation.

The value of n needs to be chosen so that the smaller,

noisy structures are removed, while the larger struc-

tures are preserved. Once the order of the morphologi-
cal filter is calculated, the segmented image is denoised

using (7).

3 Applications

We provide a selected list of AM-FM biomedical imag-

ing applications in Table 3. We have a number of med-

ical applications based on energy operators. In one of

the earlier applications in electron microcopy, a simple

Bayesian method using the IA and the IF was used, in
conjunction with morphological filtering to provide seg-

mentations of different abnormalities over 26 images [7].

Elshinawy et al. [26] demonstrated the reconstruction

of breast cancer images using AM-FM components.

Boudraa et al. [27] introduced a new cross-energy

operator and used the operator to demonstrate the func-

tional segmentation of dynamic nuclear images. Mara-
gos et al. provide an important application in [28], where

AM-FM models are used for improving Doppler ultra-

sound resolution. Vector-valued based AM-FM demod-

ulation is given in [29].

Hilbet-based AM-FM methods were used recently

applied to medical imaging problems such as chest ra-

diographs [21, 22], ultrasound images of carotid artery

[30–32], retinal images [8,33,34], and electron microscopy
[7].

AM-FM methods are being applied to different med-

ical applications for not only 2D signals images but also
for 1D signals. Only in the last two years, there have

been 1D signal applications based on AM-FM meth-

ods [35–38], for the classification of surface electromyo-

graphic signals [30], brain rhythms in electroencephalo-
grams [39]. We will not summarize 1D applications. We

do note that the general AM-FM methodology is also

closely related to traditional time-frequency analysis.
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For 2D medical applications, related work includes

the work by Pattichis [9] where he describes AM-FM

methods and models for biomedical image computing,

image retrieval in ophthalmology [40], tracking [41–43]

and analysis [44, 45].

3.1 Retinal Image Analysis

Diabetic retinopathy (DR) and age-related macular de-

generation (AMD) are two retinal diseases that present

particular characteristics (lesions) on retinal photographs

which can be used in early detection and/or classifica-
tion of the disease. DR and AMD affect individuals in

their most productive years of life. Early detection that

leads to prevention of vision loss, alone, will lead to

significant decrease in risk of early vision loss.
According to the National Eye Institute, diabetic

retinopathy (DR) is one of the leading causes of blind-

ness among working-age Americans, while macular de-

generation is a leading cause of blindness among older

Americans [57]. It has been shown that regular com-
prehensive eye exams and timely treatment can lead

to improved outcomes and reduced loss of vision. How-

ever, to screen the tens of millions at risk for DR would

tax the health-care system beyond capacity. Results of
an automatic DR screening system based on AM-FM

exhibit strong promise in addressing this problem.

Age-related macular degeneration (AMD) is the most

common cause of visual loss in the United States and

is a growing public health problem. One third of Amer-
icans will develop AMD in their lifetimes. To detect

AMD, retinal images are graded using the Age-related

Eye Disease Study (AREDS) protocol for human grad-

ing. AM-FM has been used to develop an automated
system for characterizing pathological features on these

images.

3.1.1 Diabetic Retinopathy

AM-FM has been used to characterize retinal images

with DR, and to screen out patients with different levels
of the disease. Fig. 3 shows an image of a retina with

DR and one of its IA image.

The types of lesions that need to be detected by the

system are shown in Fig. 4. Agurto et al. [33, 58] pre-

sented the extraction of Amplitude-Modulation Frequency-
Modulation (AM-FM) features for classification of DR

images using 376 images from the MESSIDOR database

[59].

These 376 images were processed with AM-FM and
were divided in two groups for training and testing pur-

poses. Table 4 shows the number of images per risk in

each group. The most severe level of DR is grade 3, in

(a)

(b) (c)

Fig. 3 Example of a retinal image with DR. Note the exudates
shown with a white square. (a) Original Retinal Image. (b) In-
stantaneous Amplitude using CoS 4. (c) Thresholded Image of
(b) showing large IA values. A valid range for the pixels between
[15% - 30%] of the maximum value was used for determining the
thresholded image.

which 15 or more microaneurysms or 5 or more hem-

orrhages are present. For grade 2, the number of mi-

croaneurysms in the retina is between 5 and 15 and

for grade 1 the retinal images contain between 1 and 5
microaneurysms. The grade 0 corresponds to diabetic

patients with no apparent DR in the image. It is im-

portant to mention that the images not only contain

red lesions such as microaneurysms and hemorrhages,
but also contain bright lesions such as exudates and

cotton-wool spots.

After all the images were processed with AM-FM,

they were divided in regions of 100x100 pixels avoiding

the optic disc. We calculate as feature vectors the mo-
ments in each region: mean, standard deviation, skew-

ness, and kurtosis. Finally, the information per image is

the input for the PLS algorithm were the algorithm is

trained to classify normal images vs abnormal images.
The results obtained with this approach show an

area under the ROC curve of 0.84 with best sensitiv-

ity/specificity of 92%/54%. Table III shows the number

of images correctly classified per risk level. On this table

we can see a large percentage of the high-risk patients
are being classified correctly.

3.1.2 Age-Related Macular Degeneration

Barriga et al. [34] have developed a system based on

AM-FM to generate multi-scale features for classify-
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Table 3 Select list of AM-FM applications in Biomedical Imaging.

Author Filterbank AM-FM Demodula-
tion Method

Medical Application

Pattichis et al. 2000 [7] Gabor filterbank Quasi-Eigenfunction
Approximation (QEA)

Electron microscopy image segmentation

Maragos et al. 2002 [28] 1-D Gabor filterbank Energy Separation Al-
gorithm (ESA)

Doppler ultrasound spectroscopy resolution

Elshinawy et al. 2004
[26]

Gabor filterbank QEA and continuous-
space demodulation

Demonstrated AM-FM reconstructions of
breast cancer images

Boudraa et al. 2006

[27]

Cross ΨB energy oper-

ator

Nuclear cardiac sequences for one normal and

four abnormal cases

Alexandratou et al.
2006 [29]

Gabor filterbank Vector-valued ESA for
color images

Ploidy image analysis (cancer).

Murray et al. 2007 [46] Dyadic 3D filterbank
(optimal design)

QEA + new AM and
FM motion estimation

Motion Estimation for Atherosclerotic Plaque
videos compared against other Phased-based
method

Murray et al. 2008 [8],
Agurto et al. 2008 [33]
and Barriga et al. [34]

Dyadic 2D filterbank New variable spacing,
local linear phase (VS-
LLP) method

Retinal image analysis.

Pitris et al. 2009 [47–
49]

Gabor QEA Optical coherence tomography.

Rodriguez et al. 2002-
2006 [50–52]

Dyadic 2D filterbank QEA implementation
using SIMD

Cardiac applications including Wireless Trans-
mission.

Gill et al. 2005 [53] 1-D monocomponent
AM-FM

Detection and identification of heart sounds.

Ramachandran et al.
2001 [54, 55], Pattichis
et al. 2002 [56] and
Murray et al. 2009 [21,

22]

Polynomial 2D fil-
terbank [54–56]
and Dyadic 2D fil-
terbank (optimal

design) [21, 22]

Hilbert-based AM-FM Analysis of pneumoconiosis X-Ray images.

Nguyen et al. 2008 1-D filters and Kalman
filters

1-D Hilbert based AM-
FM

Analysis of Electroencephalography.

Christodoulou et al.
2009 [30, 31] and
Loizou et al. 2009 [32]

Dyadic 2D filterbank New VS-LLP method Segmentation and classification in the carotid
artery.

Fig. 4 Lesions typical of a DR retinal image. A) Microaneurysm
B) Exudates C) Hemorrahages D) Neovascularization.

ing pathological structures, such as drusen, on a retinal

image. Drusen are subretinal deposits characteristic of

AMD. Fig. 5 shows an AMD patient with soft and hard

Table 4 Images correctly classified per risk. Risk 0 has no DR
while Risk 3 images present the most amount of lesions.

Risk Number Percentage
(%)

3 68 97

2 32 82

1 8 89

0 38 54

drusen present (white spots on the fundus). The stan-

dard high-resolution AREDS images were downloaded

from the Wisconsin Fundus Photo Reading Center’s

website [60]. A certified ophthalmic technician (reader)
selected the retinal features. For these studies, only ar-

eas that contain retinal background, vessels, soft drusen,

and hard drusen were used. After the reader selected
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Fig. 5 Retinal image from AMD patient from the AREDS stan-
dard database.

Table 5 Mahalanobis distance between retinal features: Retinal
Background (RB), Hard Drusen (DRH), Soft Drusen (DRS), and
Vessels.

RB DRH DRS Vessels

RB - 3.37 5.56 5.34

DRH - - 2.82 4.42

DRS - - - 4.50

Vessels - - - -

the features, regions of interest (ROI) of 40x40 pixels
were extracted from the image.

After calculating the AM-FM histograms, principal

components analysis (PCA) was applied to the matrix

containing histograms of the 120 ROIs (30 for each reti-

nal structure) for three different AM-FM features: IA,
IF magnitude (|IF|), and IF angle. Finally, the Maha-

lanobis distances between the different retinal struc-

tures based on PCA decomposition were calculated.

These distances are shown in Table 5.

The numbers in Table 5 represent the standard de-

viations separating the histograms of the retinal struc-

tures. The entries under DRH (hard drusen) and DRS

(soft drusen) show that they are significantly differen-

tiated from other structures in the retina. A distance
of 3 standard deviations represents a classification ac-

curacy of > 90%. The most interesting entry is the Ma-

halanobis distance between the two drusen types (2.8

standard deviations). Though still considered a high
classification rate (85%), this demonstrates the chal-

lenge not only to the algorithm, but for the grader in

unequivocally assigning drusen to one class or another.

3.2 Pneumoconiosis in chest radiographs

The chest radiograph is an essential tool used in the

screening, surveillance, and diagnosis of dust-related

respiratory illness resulting from silica and coal dust,
asbestos, and a variety of other dusts that can lead to

disease. The standardized method used by the Interna-

tional Labor Organization (ILO, [23]) for interpreting

the chest radiograph for inorganic dust-induced diseases
or pneumoconioses has been widely utilized for the past

five decades.

Two limitations of the current ILO system are the

intra- and inter-interpreter variability and the time con-

suming process of interpreting large numbers of radio-

graphs taken for screening and surveillance programs.

Murray et al. [21,22] have developed a technique based
on AM-FM that detects the level of pneumoconioses

based on the nodule formation on the lungs.

Currently, the US remains 6th in the world for pneu-

moconiosis and interstitial lung disease (ILD) or pul-

monary interstitial fibrosis as large numbers of workers

continue to be exposed to dust in their work environ-
ment. Coal workers’ pneumoconiosis (CWP) is identi-

fied by a specific pattern of X-Ray abnormalities and

a history of exposure to coal dust. The chest radio-

graph is the single most useful tool for clinically evalu-

ating both occupationally related and non-occupational
chronic lung diseases. The chest radiograph is an essen-

tial tool used in the screening, surveillance, and diag-

nosis of dust-related respiratory illness resulting from

silica and coal dust, asbestos, and a variety of other
dusts that can lead to disease.

We presented in [21,22] an AM-FM method for grad-

ing chest radiographs according to the ILO standards.
Related work can be found in [55, 56, 61–65]. First, a

logarithmic transformation to the images is applied to

improve the contrast of the X-Rays [54]. Then, the AM-

FM estimates of each X-Ray image is encoded using
their histograms as described in the subsection 2.3.1

using the tuned bandpass filters and scales showed in

Tables 1 and 2. The final classification was computed

using the linear regression method PLS (described in
subsection 2.4).

The results obtained by the system were excellent
(area under the ROC curve, AUC = 1.0). However, the

significance of the results should be debated based on

the small database used. The authors plan as future

work the testing of the system using a much bigger
database. The authors produced classification results

that were significantly better than those presented in

[55, 56, 64].
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3.3 Carotid Artery Ultrasound images

Cardiovascular disease (CVD) is the third leading cause

of death and adult disability in the industrial world

after heart attack and cancer. Of all the deaths caused
by CVD among adults aged 20 and older, an estimated

6 millions are attributed to coronary heart disease and

to stroke, with atherosclerosis as the underlying cause

[30–32].

A method based on image analysis of ultrasound im-

ages of carotid plaques that can differentiate between

the stable plaques that tend to remain asymptomatic
and the unstable ones that eventually produce symp-

toms has the potential to refine the basis for surgery

and spare some patients from an unnecessary costly op-

eration which itself carries a risk of stroke.

AM-FM methods are being applied for characteriz-

ing and analyzing plaques in ultrasound images.

Christodoulou et al. present in [31] their investigations
for the AM-FM characterization of carotid plaques in

ultrasound images. In [32], Loizou et al. present how

to use AM-FM features for describing atherosclerotic

plaque features. In what follows, we described the ba-

sics of their approaches.

The extraction of features characterizing efficiently

the structure of ultrasound carotid plaques is important

for the identification of individuals with asymptomatic
carotid stenosis at risk of stroke. Christodoloulou et

al. present how to characterize the carotid plaques us-

ing AM-FM features in [31]. They use as basic descrip-

tors the information about the AM-FM estimates sim-
ilar as in the subsection 2.3.1: the IA, IF magnitude

and IF angle histograms. In addition to the AM-FM

features, the authors compute Spatial Gray Level De-

pendence Matrices (SGLDM) computing the following

texture measures: (i) angular second moment, (ii) con-
trast, (iii) correlation, (iv) sum of squares: variance, (v)

inverse difference moment, (vi) sum average, (vii) sum

variance, (viii) sum entropy, (ix) entropy, (x) difference

variance, (xi) difference entropy and (xii) information
measures of correlation. Also, the Gray Level Difference

Statistics (GLDS) are computed: (i) contrast, (ii) an-

gular second moment, (iii) entropy and (iv) mean. The

final step applied by the authors corresponds to the

statistical k-nearest neighbor (KNN) classifier imple-
mented for different values of k (k = 1, 3, 5, 7, 9, 11, 13).

The authors applied their method to a database of 274

carotid plaque ultrasound images divided as 137 symp-

tomatic and 137 asymptomatic.
Using the AM-FM estimates, the authors got a classi-

fication success up to 71.5% when the three AM-FM

estimates and k = 5 were used. This result was better

than using the textures features SGLDM and GLDS

when they got 68.2% of succeed.

Loizou et al. present in [32] an AM-FM analysis as

an application for investigating the intima media com-

plex (IMC), media layer (ML) and intima layer (IL)
of the common carotid artery (CCA). This study rep-

resents the first study for the IMC, IL and ML. Clin-

ically, the intima-media thickness (IMT) is used as a

validated measure for the assessment of atherosclerosis,
that causes enlargement of the arteries and thickening

of the artery walls. The authors use the same AM-FM

histograms as in subsection 2.3.1 but computed using

only horizontal-oriented bandpass filters. Thus, the au-

thors use similar scales like those described in Table 1
but using only the filters numbered as (see Fig. 2a): 1

(LPF), 2, 5 (in the H scale), 8, 11 (in the M scale) and

14 and 17 (in the L scale). The reason for the selec-

tion of these horizontal-oriented filters is related with
the horizontally elongated nature of the atherosclerotic

structures. As the last step for the statistical analysis,

the authors use the Mann-Whitney rank sum test in or-

der to identify is there are significant differences (SD)

or not (NS) between the extracted AM-FM features.
The authors use p < 0.05 for significant differences and

comparison between different age groups.

Their study, performed on 100 ultrasound images, re-

veals that the IA of the media layer decreases with
age. The authors state that the decreasing of the IA

is maybe related to the reduction in calcified, stable

plaque components and an increase in stroke risk with

age. In terms of the IF, the median of this AM-FM

estimate of the media layer increases suggesting frag-
mentation of solid, large plaque components that also

increases the risk of stroke.

4 Conclusions and Future Work

This paper has shown the advances in the application

of AM-FM to medical imaging. Its ability to represent

different frequencies is highly valuable when analyz-

ing structures with spatial and spectral variability. In
retinal images, structures such as drusen and microa-

neurysms have a well-defined shape that gets captured

by the higher-frequency scale AM-FM filters, while ves-

sels and hemorrhages are better represented in the lower

frequencies. In chest radiographs, nodules can also be
well represented using the AM-FM features. The combi-

nation of feature extraction and classification using PLS

has produced robust systems for the analysis of chest

radiographs, where an automatic grading system for
pneumoconiosis has been demonstrated on a limited-

size database. For diabetic retinopathy, a screening sys-

tem has been developed and it is currently being tested
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on an extensive database for FDA approval.

Future work on AM-FM will be concentrated on devel-

oping new scales (compared with the four-scale filter-

bank showed in Fig. 2) for representation of lower fre-

quencies. Also, a filter design that includes a constraint
of the number of coefficients (length in space) will be

applied. This approach will have the advantage of not

including extra information of lesion shapes when the

filters are applied.
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