Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images

Carla Agurto¹², Simon Barriga¹, Victor Murray², Sheila Nemeth¹³, Robert Crammer¹⁴, Wendall Bauman⁵, Gilberto Zamora¹, Marios S. Pattichis², Peter Soliz¹⁶

Purpose. To describe and evaluate the performance of an algorithm that automatically classifies images with pathologies commonly found in diabetic retinopathy (DR) and age-related macular degeneration (AMD).

Methods. Retinal digital photographs (N=2247) of 3 fields of view (FOV) were collected of the eyes from 822 patients at two centers: The Retina Institute of South Texas (RIST) and The University of Texas Health Science Center San Antonio (UTHSCSA). Ground truth was provided for the presence of pathologies including: microaneurysms, hemorrhages, exudates, neovascularization in the optic disc and elsewhere, drusen, abnormal pigmentation, and geographic atrophy. The algorithm was used to report on the presence or absence of pathology. A detection threshold was applied to obtain different values of sensitivity and specificity with respect to ground truth and construct a Receiver Operating Characteristic (ROC) curve.

Results. The system achieved an average area under the ROC curve (AUC) of 0.89 for detection of DR and of 0.92 for detection of sight-threatening DR (STDR). With a fixed specificity of 0.50, the system’s sensitivity ranged from 0.92 for all DR cases to 1.00 for clinically significant macular edema (CSME).

Conclusions. A computer-aided algorithm was trained to detect different types of retinal pathologies. The cases of hard exudates within 1 disc diameter (DD) of the fovea (surrogate for CSME) were detected with very high accuracy (sensitivity = 1, specificity = 0.50) whereas mild non-proliferative DR was the most challenging condition (sensitivity= 0.92, specificity= 0.50). The algorithm was also tested on images with signs of AMD, achieving a performance of AUC = 0.84 (sensitivity= 0.94, specificity= 0.50).

Diabetic Retinopathy (DR) is a disease that affects up to 80% of diabetics around the world and it is one of the leading causes of blindness in the U.S. It is the second greatest cause of blindness in the western world¹. On the
other hand, Age Related Macular Degeneration (AMD) is the leading cause of blindness in people older than 65 years. More than 1.75 million people have AMD in the U.S. and this number is expected to increase to 3 million people by 2020\(^2\). Many studies have demonstrated that early treatment can reduce the amount of DR and AMD cases mitigating the medical and economic impacts of the disease\(^3\).

Accurate, early detection of eye diseases is important because of its potential for reducing the number of cases of blindness around the world. Retinal photography for DR has been promoted for decades for both the screening of the disease as well as in landmark clinical research studies, such as the Early Treatment Diabetic Retinopathy Study (ETDRS)\(^4\). Although the ETDRS standard fields of view (FOV) may be regarded as the current gold standard\(^5\) for diagnosis of retinal pathology, studies have demonstrated that the information provided by two or three of these fields is sufficiently comprehensive to provide an accurate diagnosis of diabetic retinopathy and more than sufficient for screening\(^6\).

In recent years several research centers have presented systems to detect pathology in retinas, some notable ones having been presented by Larsen\(^7\), Abramoff\(^8\), Chaum\(^9\), and Fleming\(^10,11\). However, these approaches must apply specialized algorithms to detect a specific type of lesion in the retina. In order to detect multiple lesions, the previous systems generally implement more than one of these algorithms. Furthermore, some of these studies evaluate their algorithms on a single dataset, which avoided the problems associated with the differences in fundus imaging devices, such as resolution.

These methodologies primarily employ a "bottom-up" approach in which the accurate segmentation of all the lesions in the retina is the basis for correct determination. A disadvantage of bottom-up approaches is that they rely on the accurate segmentation of all the lesions in the retina in order to measure performance. Yet, the development of specialized segmentation methods can be challenging. In such cases, lesion detection can suffer from the lack of effective segmentation methods. This is particularly problematic for advanced stages of DR, such as neovascularization.

A top-down approach, such as the one used in our study, does not depend on the segmentation of specific lesions. Thus, top-down methods can potentially detect abnormalities not explicitly used in training\(^12\). Our objective here is
then to show that this approach is a suitable implementation for eye disease detection with specific consideration to diabetic retinopathy and age-related macular degeneration.

Methods

1. Data Description

The retrospective images used to test our algorithm were obtained from the Retina Institute of South Texas (RIST, San Antonio, TX) and the University of Texas Health Science Center in San Antonio (UTHSCSA). Fundus images from 822 patients (378 and 444 patients from RIST and UTHSCSA, respectively) were collected retrospectively for this study. The images were taken using a Topcon TRC 50EX camera at RIST and a Canon CF-60uv at UTHSCSA. Both centers captured 45-degree mydriatic images with no compression. The size of the RIST images is 1888x2224 pixels and the size of the UTHSCSA images is 2048x2392 pixels. Both databases were collected in the South Texas area where according to the U.S. Bureau of the Census 2009 the ethnicity distribution for this area is, 58.3% Hispanic, 31.3% white (non-Hispanic), and 7.8% Afro-Americans. For the database provided by the UTHSCSA, no information about age or sex of the patients was provided. In the case of the RIST database, the data were collected from July 2005 to February 2010. The distribution of patients is 50.8% females and 49.2% males. Age information is also provided and it is distributed as follows: 1.1% [0 to 24 years], 6.6% [25 to 44 years], 26% [45 to 64 years] and 66.3% being aged 65 years or older. All the images that presented with cataracts at their early stage, retinal sheen, or lighting artifacts were considered for this study. We excluded retinal images presenting advanced stages of cataracts, corneal and vitreous opacities, asteroid hyalosis, and significant eye lashes or eye lids artifacts. The number of images excluded in this study corresponds to 67 images or 5.8% of the RIST database and 57 images or 5.2% of the UTHSCSA database.

Fig. 1 shows examples of images from the three FOV found in both databases. Figure 1a is centered in the optic disc (FOV1). Figure 1b is centered in the fovea (FOV2), and Figure 1c is focused on the superior temporal region of the retina (FOV3). Each image was graded independently in the following categories: Normal, Non-Proliferative DR (NPDR), Sight Threatening DR (STDR), and Maculopathy. Table 1 shows the distribution of each subject’s eye in these categories. In addition, ten retinal pathologies were specified by the graders according to Tables 2 and 3. Seven pathologies are related to DR: Microaneurysms, hemorrhages, exudates less than one disc diameter away from the
fovea, exudates elsewhere, intra-retinal microvascular abnormalities (IRMA), neovascularization on the disc (NVD), and neovascularization elsewhere (NVE). The three pathologies related to AMD were: Drusen, abnormal pigmentation, and geographic atrophy.

![Figure 1](image)

Figure 1 (a-c) FOVs 1, 2 and 3 of a normal retina from the RIST database; (d-f) FOVs 1, 2 and 3 of an abnormal retina from the UTHSCSA database.

<table>
<thead>
<tr>
<th>Table 1 Distribution of the RIST and the UTHSCSA databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>RIST</td>
</tr>
<tr>
<td>UTHSCSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Distribution of DR pathologies for the RIST and the UTHSCSA databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Lesion</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Number of images in the RIST database</td>
</tr>
<tr>
<td>Number of images in the UTHSCSA database</td>
</tr>
</tbody>
</table>
Table 3 Distribution of AMD pathologies for the RIST and the UTHSCSA databases

<table>
<thead>
<tr>
<th>Presence of Lesion</th>
<th>Drusen</th>
<th>Pigmentation</th>
<th>Geographic Atrophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of images in the RIST database</td>
<td>343</td>
<td>345</td>
<td>154</td>
</tr>
<tr>
<td>Number of images in the UTHSCSA database</td>
<td>188</td>
<td>86</td>
<td>54</td>
</tr>
</tbody>
</table>

The graders followed the criteria of image quality based on the clarity of vessels around the macula13. Under these criteria, images can be classified as excellent, good, fair, and inadequate image quality. Following the criteria, we removed 193 images, or 16.7\% of the RIST database, and 111 images or 10.2\% of the UTHSCSA database. Figure 2 shows examples of images not considered for this study due to their low quality.

Figure 2 Examples of the type of images that were not used by our algorithm. (a) Low quality due to advance stage of cataract, (b) Low Quality due to the reflection of the iris, (c) Inadequate image quality, (d) Inadequate image quality.

2. Image processing
Figure 3 Procedure to classify the retinal images. First the green channel of the images is selected. Then the images are processed by AM-FM in order to decompose them in their AM-FM estimates. Depending on the test, the images are subdivided in ROIs, the macula or the optic disc region is selected or the entire image without the optic disc is entered to the block of the feature extraction. Features are obtained for each observation. If the image is represented in ROIs, k-means is applied; otherwise the feature selection and the two step PLS classifier is applied to obtain the estimated class for each image.

The detection process starts with the extraction of features from the retinal images (see Fig. 3 for the complete procedure). Our algorithm uses a technique called Amplitude Modulation - Frequency Modulation (AM-FM)12,14,15 to define the features and to characterize normal and pathological structures based on their pixel intensity, size, and geometry at different spatial and spectral scales. We refer to the Appendix for a more detailed explanation of the AM-FM approach.

Since the result of AM-FM processing produces some features that may not be important to the accurate classification of images, we used informative outputs of a sequential backward elimination process in which the contributions of each feature is measured and the ones that do not improve the classification performance are eliminated from our set. This process is applied independently for each of the pathologies of interest in order to obtain a better characterization of the pathologies.

In order to extract information from an image, AM-FM decomposes the images into different representations which reflect the intensity, geometry, and texture of the structures in the image. In addition to obtaining this information per image, filters were applied to obtain image representations in different bands of frequencies. For example, if a
medium or high pass filter is applied to an image, the smaller retinal structures (e.g. MAs, dot-blot hemorrhages, exudates etc.) will be enhanced. This can be observed in Fig. 4(b) and 4(c), where the different type of red lesions, exudates and thinner vessels present in the retinal region are captured. On the other hand, if a low pass filter is applied then larger structures are captured such as wider vessels as shown in Fig. 4(e). By taking the difference of the two lowest scale representations, smaller vessels can also be captured, as seen in Fig. 4(f). Using these two ways of processing (AM-FM image representations and output of the filters), more robust signatures of the different pathologies can be characterized. This means that if we combine the representations of the different scales, we can obtain signatures for each structure which allow us to detect and uniquely classifying them.

Figure 4 Structures in the retina captured by the AM-FM estimates using high values of the Instantaneous Amplitude (IA, in blue). (a) Region of a retinal image with pathologies; (b) Image representation using medium frequencies, which captures dark and bright lesions as well as vasculature; (c) Image representation using high frequencies, notice that this image captures most of the bright lesions; (d) Region of a retinal image with normal vessel structure; (e) Image representation using a very low frequency filter; (f) Image representation of (d) obtained by taking the difference between the very low and the ultra-low frequency scales, in this image the thinner vessels are better represented.
In order to facilitate the characterization of early cases of retinopathy in which only a few, small abnormalities are found; our process divides the images into regions of interest or ROIs. A sensitivity analysis on the size of the ROIs found that square regions of 140 by 140 pixels were adequate to represent features of small structures that can appear in the retina such as MAs or exudates. A total of 202 ROIs were necessary to cover the entire image. For classification, a feature vector was created using a concatenation of the following seven features from each region: a) the first four statistical moments (mean, standard deviation, skewness and kurtosis) and b) the histogram percentiles (25th, 50th and 75th).

A k-means clustering approach is performed to group the ROIs with similar features using the Euclidean distance between features. In this way, we avoid the necessity of time consuming process of grading each region by using an unsupervised algorithm. The resulting clusters become the representative feature vector per image. Once the feature vectors are extracted, we use them in the classification module (green block in Fig. 3). This module used a Partial Least Squares (PLS) regression classifier to find the relevant features that classify images as normal or abnormal according to ground truth.

3. Experimental Design

The following paragraphs describe the experiments performed to assess the accuracy of the system in detecting the retinal pathologies listed in Tables 2 and 3. These pathologies are characteristic of either DR or AMD. In this section we describe in detail the approaches taken for assessing the presence of these diseases in the retinal photographs.

A. DR classification

For DR-related cases, the performance of the algorithm was measured by its ability to discriminate DR cases from normal cases. To do this, we created a mathematical model of the images by training the system using a subset of the data. This training set produces a model to which the testing images are compared with. If the result of this comparison is greater than a pre-defined threshold, the image is considered abnormal (or suspect for DR). Images that fall below the threshold are labeled as normal.
Additionally, the algorithm was tested separately on sight threatening DR (STDR) cases, where STDR is defined as an image presenting with NVE, CSME, or NVD. In the following sub-sections we detail the special properties that make the AM-FM representations ideally suited for the detection of CSME and NVD.

Clinical Significant Macular Edema (CSME): Previously, investigators have found an association between hard exudates near the fovea and CSME16,17. Although hard exudates are one of the most common findings in macular edema, the presence of hard exudates is not always indicative of edema. Previous research has demonstrated that the sensitivity of exudates in predicting macular edema is 93.9\%18. Finding exudates near the fovea does not unequivocally ascertain its presence or absence. Our goal is simply to identify those patients at-risk based on the presence of hard exudates. For the purposes of this study, the presence of exudates within 1 disc diameter (DD) of the fovea was considered to be a surrogate for CSME19. The Fig. 5 shows an example of how AM-FM highlights the presence of exudates while minimizing interference from blood vessels. In this figure we see a normal retina (Fig. 5a) and one containing exudates within 1 DD of the fovea (Fig. 5b). Fig 5c shows the AM-FM decomposition of the normal retina for the high frequencies. It can be noticed that the representation eliminates all the vessels from the image and only shows a dark background. In contrast, using the same high frequencies, the AM-FM decomposition for the abnormal retina clearly highlights the exudates while eliminating the vessels.
Figure 5. Examples of structures capture by the AM-FM estimates using high values of the Instantaneous Amplitude in macular regions (the circle circumvents an area equal to one disc diameter from the fovea). (a) Normal macula, (b) Macula with hard exudates, (c) Image representation of the normal retina using high frequencies, (d) Image representation of retina with exudates using high frequencies.

Neovascularization on the Optic Disc (NVD): NVD is defined as the growth of new vessels within 1 DD of the center of the optic disc. In Figure 6, we show how NVD is represented by AM-FM. Notice that when applying medium frequencies (Fig. 6(b), 6(e)), the vessels in the optic disc and NVD are highlighted, while the NVD is best represented by the high frequencies, as it shown in Fig. 6(f). It is these combinations of AM-FM frequencies that are used by our classifier to determine the presence or absence of an abnormality. The noise present in Fig. 6c and 6f is due to a bright nerve fiber layer, but its AM-FM representation has less intensity amplitude than the abnormal vessels.
Figure 6 Examples of structures captured by the AM-FM estimates using high values of the Instantaneous Amplitude for two different optic discs. (a) Normal optic disc, (d) NVD, (b) and (e) Instantaneous Amplitude of (a),(d) using medium frequencies, (c) and (f) Image representation of (a),(d) using high frequencies.

B. AMD classification

In addition to testing the images for the presence of DR, three different pathologies related to AMD were analyzed: drusen, abnormal pigmentation, and geographic atrophy (GA). Fig. 7 shows an example of a retinal image with drusen and one of its corresponding AM-FM image representations. As seen in this example, drusen are noticeably highlighted by AM-FM. We then tested the system in the following scenarios: Normal vs. drusen, normal vs. abnormal pigmentation, Normal vs. GA, and normal vs. all AMD pathologies. For the drusen experiment, all stages of presence of drusen were categorized in the same group without distinction of severity, e.g. a few isolated druse versus large, confluent drusen.
4. Results

A. Inter-reader variability

In order to analyze the consistency of the grading criteria, a randomly selected subset of 10% of the data from RIST and UTHSC was given to two graders: an optometrist (grader 2) and an ophthalmologist (grader 3). This random selection process has been used by others such as Abramoff et al. who used 1.25% of their data (~40000 images) to compared rates from three retinal specialists. Our new subset the database described in Tables 2 and 3 was read by the three graders according to the original categories. The agreement between graders was calculated using the kappa value. We calculated the kappa statistic for 3 exclusive classes: Normal retinas, abnormal retinas and Sight threatening eye diseases, as reported in Table 7.
Table 7 Measurement of agreement of 3 readers using the Cohen's kappa value for normal retinas, abnormal retinas and sight threatening eye diseases.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Kappa class</th>
<th>Kappa value</th>
<th>SE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grader 1 vs. Grader 2</td>
<td>Unweighted</td>
<td>0.61</td>
<td>0.058</td>
<td>[0.50 0.73]</td>
</tr>
<tr>
<td></td>
<td>Linear Weighted</td>
<td>0.69</td>
<td>0.048</td>
<td>[0.60 0.79]</td>
</tr>
<tr>
<td>Grader 1 vs. Grader 3</td>
<td>Unweighted</td>
<td>0.74</td>
<td>0.056</td>
<td>[0.67 0.85]</td>
</tr>
<tr>
<td></td>
<td>Linear Weighted</td>
<td>0.79</td>
<td>0.047</td>
<td>[0.70 0.88]</td>
</tr>
<tr>
<td>Grader 2 vs. Grader 3</td>
<td>Unweighted</td>
<td>0.62</td>
<td>0.068</td>
<td>[0.49 0.76]</td>
</tr>
<tr>
<td></td>
<td>Linear Weighted</td>
<td>0.69</td>
<td>0.059</td>
<td>[0.57 0.80]</td>
</tr>
</tbody>
</table>

B. Automatic Detection Results

Cross validation was used to assess the performance of the algorithm. The ratio between training and testing data was selected so that 70% of the data was used for training and 30% was used for testing. To get a more robust classification estimate, the images in the training and the testing sets were randomly selected and the average of 20 runs is presented. This procedure minimizes the possible bias incurred if the training and testing sets were fixed. In order to compare our results with recently published algorithms the specificity was fixed to two values: 0.50 and 0.60. These values of specificity have been previously used to report sensitivity in two large studies. Figure 8 shows six ROC curves, three for each database for the following experiments: Normal vs. NPDR, Normal vs. STDR and Normal vs. DR.
Table 5 Results of performance evaluation for DR experiments and for each database.

<table>
<thead>
<tr>
<th>PATHOLOGIES</th>
<th>RIST DATABASE</th>
<th>UTHSCSA DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Images*</td>
<td>AUC</td>
</tr>
<tr>
<td>DR</td>
<td>[419 144]</td>
<td>0.81</td>
</tr>
<tr>
<td>NPDR only</td>
<td>[226 144]</td>
<td>0.77</td>
</tr>
<tr>
<td>STDR only</td>
<td>[193 144]</td>
<td>0.92</td>
</tr>
<tr>
<td>CSME</td>
<td>[68 44]</td>
<td>0.98</td>
</tr>
<tr>
<td>IRMA + NVE</td>
<td>[95 144]</td>
<td>0.85</td>
</tr>
<tr>
<td>NVD</td>
<td>[28 50]</td>
<td>0.88</td>
</tr>
</tbody>
</table>

* The first term in the brackets refers to the abnormal cases while the second term in brackets refers to the number of normal cases used in each experiment.

Table 6 Results of performance evaluation for AMD experiments and for each database.

<table>
<thead>
<tr>
<th>PATHOLOGIES</th>
<th>RIST DATABASE</th>
<th>UTHSCSA DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Images*</td>
<td>AUC</td>
</tr>
<tr>
<td>AMD only</td>
<td>[248 144]</td>
<td>0.84</td>
</tr>
<tr>
<td>Drusen</td>
<td>[91 98]</td>
<td>0.77</td>
</tr>
<tr>
<td>Pigmentation</td>
<td>[55 98]</td>
<td>0.80</td>
</tr>
<tr>
<td>Geographic Atrophy</td>
<td>[100 98]</td>
<td>0.92</td>
</tr>
</tbody>
</table>

* The first term in the brackets refers to the abnormal cases while the second term in brackets refers to the number of normal cases used in each experiment.
Figure 8. ROC curves for the classification of DR, STDR and NPDR. (a) Curves for RIST database, (b) Curves for UTHSCSA database.

5. Discussion

A. Inter-Reader Variability

Table 7 shows the kappa values obtained to measure the inter-reader variability. Based on the Landis and Koch interpretation of kappa values, we obtained substantial agreement (kappa values higher than 0.6) between all three graders. Further analysis was performed for grading the different sight threatening categories obtaining kappa values of 0.71 and 0.60 for CSME and NVD, respectively, while for NVE+IRMA cases, a kappa value of 0.55 (moderate agreement) was obtained. When we analyzed the differences between graders for this last category, we noticed that most of the disagreements were present in the detection of IRMA. An illustration of this is shown in Fig. 9. The two images shown in figures 9a and 9b were presented to the graders again after applying local contrast enhancement and they agreed that the pathology was present. Lower image quality and blurring on some images are some of the factors that contributed to the disagreement between graders. In addition, we found that the presence of other pathologies mask the presence of IRMA as it is shown in Fig 9a.
Figure 9 Retinal images with IRMA. (a) Presence of IRMA in the image was not detected by the first grader, (b) Presence of IRMA in the image was not detected by the second grader, (c) and (d) Images a and b with enhancement.

B. Automatic Algorithm Results

Although different databases were used, the results for both databases are consistent, in particular in patients with STDR. For both databases the best results are obtained for CSME detection (hard exudates less than one disc-diameter away from the fovea) and the worse are obtained for the detection of images with drusen. It can be seen from the table above that the majority of the experiments, especially in the case of DR, the results of the UTHSCSA database (AUC = 0.89) are slightly better than the RIST results (AUC = 0.81). One of the main factors contributing to this difference is the higher quality images found in the UTHSCSA database, as assessed by the expert graders.

From Table 5 one can observe that the algorithm detects CSME cases, i.e. hard exudates, with high sensitivity in the range of [0.98 1] for 0.50 specificity. For detecting cases with non-proliferative DR, hemorrhages and microaneurysms, the algorithm produced results comparable or better than ones presented by other large studies such as Fleming et al.10 which obtained sens/spec of 89%/50% for mild DR.

For detection of NVD, the algorithm achieved AUCs of 0.88 and 0.91. This result highlights one of the advantages of our approach, as abnormal vessels can be discriminated from normal ones through analysis of the different image representations generated by AM-FM without the need for explicit segmentation of the vasculature.
In the detection of NVE and IRMA, the performance of the algorithm was 0.85 and 0.92 of sensitivity for 0.50 specificity for both databases. We observed here that one of the factors that affect the algorithm is the ground truth. When we compared the graders measurement for this pathology, we observed only moderate agreement (kappa = 0.55). Furthermore, since a ground truth is required to train the classifier, different graders can lead to different classification models even though the same set of images is used. To the best of our knowledge, this is the first published result on automatic detection of NVE.

One of the issues to test our algorithm was the relative low proportion of cases with early stages of DR. This is due to the nature of the centers where the data were collected, which tended to bias the samples to patients with advanced stages of retinal disease. We have reported other studies12,25 with the available online database MESSIDOR but this database were not useful in this study since it does not contain enough samples of advanced cases. In the future, we will train the system using a database that will contain a more proportionate number of DR stages, ranging from normal to NPDR, PDR, and maculopathy. In our experiments we have found that a robust training set is the most important aspect when improving the performance of the system. In fact, as the number of cases analyzed by the algorithm increased, so did its accuracy. This is evidenced by the improvements found over the results presented in our previous publications on the topic.12,22,23,24,25,26

An advantage of our top-down approach is clearly shown in the detection of abnormalities related to AMD. Although the system was not originally intended for those abnormalities, by adding AMD cases to the training database we were able to detect these lesions with an accuracy of sens/spec = 0.94/0.50 and 0.90/0.50 for the RIST and UTHSCSA databases respectively.

The results presented in this paper are comparable with the ones published by other investigators. For example, Abramoff et al.8 tested their algorithm in 15000 patients obtaining an AUC of 0.88 (sens/spec = 0.93/0.60) for the detection of diabetic retinopathy. In a study of 33535 patients from the Scottish National DR screening program, Fleming, et al.10 reported detection of background retinopathy with 0.84 sensitivity and 0.50 specificity, and detection of maculopathy with a sensitivity of 0.99 for the same level of specificity. Both of those studies only looked at the detection of DR, in contrast to our study which added cases of AMD. Chaum et al.9 conducted a study with 395 retinal images, and reported a range of sensitivity of [0.75 to 1] in the detection of age-related macular degeneration.
and sensitivity of [0.75 to 0.947] in the detection of DR. In our approach, by using the information provided in Tables 5 and 6, we report detection of DR with sens/spec = 0.92/0.60 and 0.94/0.60, detection of CSME with sens/spec = 1/0.60 and 0.99/0.50 and detection of AMD with sens/spec = 0.90/0.60 and 0.94/0.50). As can be observed, this approach demonstrates an algorithm that has the capability to detect the presence of pathologies associated to more than one eye disease.

By observing the ROC curves (Fig. 8), the performance of the algorithm in RIST and UTHSCA databases for the detection of STDR cases is very high, with sensitivities of 0.96 and 0.98 for a fixed specificity of 0.50 respectively. If we fix the specificity to 80%, the algorithm achieved sensitivities of 0.92 and 0.85 for the RIST and UTHSCSA databases, respectively. For the other two experiments, NPDR and DR, we achieved sensitivities in the range of [0.88 0.97] for 0.50 specificity.

In conclusion, this work presents a viable and efficient means to characterize different retinal abnormalities and build binary classifiers for detection purposes. Although automatic detection of DR has been studied by different groups in the last decade, few studies used a top-down approach like the one we proposed. In addition to that, to our knowledge, automatic detection of STDR as well as neovascularization, pigmentation and GA has not been concurrently addressed at the levels of performance presented in this work.

Appendix: Amplitude Modulation – Frequency Modulation and Feature Extraction

The image representations from which the features are generated are obtained using a technique called AM-FM. In order to extract information from an image, this technique decomposes the green channel of the images into different representations which reflect the intensity, geometry, and texture of the structures in the image. The AM-FM decomposition for an image \(I(x,y) \) is given by:

\[
I(x,y) \approx \sum_{n=1}^{M} a_n(x,y) \cos \phi_n(x,y)
\]

where \(M \) is the number of AM-FM components, \(a_n(x,y) \) denotes instantaneous amplitude estimate (IA) and \(\phi_n(x,y) \) denotes instantaneous phase. Using the latter, two AM-FM estimates are generated by extracting the
magnitude and the angle of its gradient. These estimates are called instantaneous frequency magnitude (|IF|), and instantaneous frequency angle.

In addition to obtaining this information per image, filters are applied to obtain image representations in different bands of frequencies. For example, if a medium or high pass filter is applied to an image, the smaller retinal structures (e.g. MAs, dot-blot hemorrhages, exudates etc.) are enhanced. Using these two ways of processing (AM-FM image representations and output of the filters), more robust signatures of the different pathologies can be characterized. At the end of this step, an image has 39 different representations that characterize the different pathologies found in the retina. A more extensive mathematical description of the AM-FM technique can be found in a previously published paper12. In this section we will describe conceptually the way AM-FM represents two structures commonly found in DR images: retinal vessels and rounded dark lesions. The same analysis to be presented here can be done for bright lesions, large hemorrhages, and abnormal vessels, among other retinal features.

Figure 10 shows the way a horizontally oriented retinal vessel is represented by AM-FM, and the resulting histograms for the three different AM-FM estimates: Instantaneous amplitude (IA), instantaneous frequency magnitude (|IF|), and instantaneous frequency angle. The arrows in Fig. 10a show the direction in which the frequency change is happening, meaning, the way the pixel values are changing from dark (vessel) to bright (retinal background). The pixels in the background will only have slight changes in intensity, and therefore their frequencies are close to zero. The only areas generating a frequency response are those in the edge of the vessels and they will have a very distinctive |IF| as represented in Fig. 10b. The IA will have high values for the areas with higher contrast, and therefore in the ideal case the histogram of the IA will have two distinctive peaks: One for the retinal background and one for the edge of the vessels, as seen in Fig. 10c. One of the most distinctive features of vessel-like features is their directionality, which is captured by the IF angle. The direction of change will be roughly the same for an elongated structure like a vessel, and therefore the angle of the IF will generate a highly peaked histogram, as seen in Fig. 10d.
Figure 10. Conceptual AM-FM analysis for horizontally-oriented blood vessel edge: (a) Instantaneous frequencies on top of vessel-like structure; (b) Instantaneous frequency histogram; (c) Instantaneous amplitude histogram; and (d) IF angle histogram.

Figure 11. Conceptual AM-FM analysis for a rounded dark lesion: (a) Instantaneous frequencies on top of lesion; (b) Instantaneous frequency histogram; (c) Instantaneous amplitude histogram; and (d) IF angle histogram.
Figure 11 shows the histogram of the AM-FM representation for a dark rounded region such as MAs or dot-blot hemorrhages. The lesion is characterized by the IF with large values at the edge of the lesion, and low values inside and outside the lesion, as depicted in Figure 11a. Just as in the case of the vessels, the resulting |IF| histogram has a clear peak for the high-frequency values (Figure 11b). The IA histogram contains two peaks, one for the contrast changes in the background, and one for the contrast changes on the edges of the lesion, as seen in Fig. 11c. This IA histogram is similar to the one for the vessel, but since MAs are smaller than vessels, the number of pixels with high contrast will be smaller, and therefore the histogram will have a smaller peak that represent the MAs. Finally, one of the biggest differences of vessels and MAs is seen on the IF angle. In the ideal case of a perfect circular shape where all the angles of the IF are represented (as seen in Figure 11a), the histogram for the angles would be uniform (Figure 8d), since all angles of the IF are represented.

These two examples illustrate the way in which AM-FM is able to obtain different signatures for each of the two analyzed structures. By combining the outputs of the 3 estimates, any structure with different shape, color, and size can be characterized. We are conscious that retinal images present additional information such as noise or blurring which is not considered in the ideal cases presented above, but by using appropriate statistical measurements to represent the AM-FM estimates, high classification accuracy can be obtained, as shown by the results presented in this paper.

References

2010: (Agurto, C. et al. IOVS 2010;51: ARVO abstract 1793)