MULTISCALE DIRECTIONAL AM-FM DEMODULATION OF IMAGES USING A 2D OPTIMIZED METHOD

Victor Murray*, Marios S. Pattichis*, and Peter Soliz*

*University of New Mexico, Department of Elect. and Comp. Eng., Albuquerque, New Mexico, USA.
VisionQuest Biomedical, Albuquerque, New Mexico, USA.
E-mails: vmurray@ieee.org, pattichis@ece.unm.edu, psoliz@visionquest-bio.com

ABSTRACT

We present an improved and optimized formulation for the estimation of the multiscale amplitude-modulation frequency-modulation (AM-FM) estimates when (i) non-separable filters are used and (ii) the variable spacing, local linear phase method is used. Also, we introduce the use of multiscale directional filterbanks for the feature extraction of images.

Recently, AM-FM methods have shown promising results in a variety of medical image analysis applications. The 2D optimized AM-FM demodulation described here presents advantages for feature extraction at different frequency scales and orientations that can be used to detect different patterns, directions, or structures in an image.

We test the new formulation using a Gaussian amplitude-modulated Quadratic frequency-modulated synthetic image and natural images. The results show that the optimized estimation produces better results, up to 4.9 times for the IF estimation and in 3 orders of magnitude for the IA estimation, for noise-free signals compared to the state-of-the-art methods.

Index Terms— amplitude-modulation frequency-modulation (AM-FM), multi-scale analysis

1. INTRODUCTION

We consider the AM-FM demodulation based on a variable spacing, local linear phase (VS-LLP) method presented in [1, 2] and applied in applications such as [3–5]. The VS-LLP method belongs to the AM-FM demodulation methods based on the notion of a Hilbert-based extension of the 1-D Hilbert-based demodulation approach. Early work can be found in Havlicek’s dissertation [6]. The phase quadrature transform for extending the Hilbert transform into two dimensions was introduced in [7, 8]. Then, Felsberg and Sommer introduced the monogenic signal, an extension of the analytic signal to images in [9]. Note that, as discussed by Havlicek in [6], the proposed approach satisfies 3 conditions: (i) amplitude continuity and differentiability, (ii) phase independence of scaling and homogeneity, and (iii) harmonic correspondence.

Recently, significant applications in many areas of image processing, specially for medical imaging, have been using amplitude-modulation frequency-modulation (AM-FM) image decompositions. Thus, the development of more accurate AM-FM methods is required. AM-FM applications range from electron microscopy image segmentation and classification in [10], breast cancer images [11], optical coherence tomography [12, 13], carotid artery [4].

magnetic resonance imaging [3], pneumoconiosis [14] to diabetic retinopathy [5], and age-related macula degeneration [15]. These applications use the advantages of the AM-FM demodulation methods in terms of the features extraction to detect different patterns, directions, or structures in an image.

The use of multiscale directional filterbanks for the feature extraction of images when orientation matters will provide extra information the medical applications described in the previous lines. Nguyen presented some analysis in [16, 17] that can be related with the use of directions. Here, our focus is in the development of multiscale directional AM-FM methods.

In the rest of the document, we describe the methodology used for the improved and optimized 2D formulation for the AM-FM estimation when non-separable filters are used. In Section 2, we present the proposed methodology. Results and a discussion are given in Section 3. Finally, conclusions are presented in Section 4.

2. METHODOLOGY

2.1. AM-FM demodulation method in medical applications

We consider a multi-scale AM-FM representation of digital non-stationary images given by [1, 2]

\[ I (k_1, k_2) \equiv \sum_{n=1}^{M} a_n (k_1, k_2) \cos \varphi_n (k_1, k_2), \]

where \( n = 1, 2, \ldots, M \) denote different frequency scales, \( a_n \) denotes the instantaneous amplitude (IA) functions, and \( \varphi_n \) denotes the instantaneous phase (IP) functions. We define each scale in terms of a collection of bandpass filters that share similar frequency magnitude ranges. As an example, in Fig. 1a, we have low (filters 14-19), medium (filters 8-13), and high (filters 2-7) frequency scales. We only consider scales derived from a dyadic filterbank decomposition described in [1, 5]. The IA functions are assumed to be slowly varying over the image. High values of the IA signify strong presence of the corresponding combination of scales. Texture variations are captured by the FM functions \( \cos \varphi \). Associated with each AM-FM component, we have the instantaneous frequency (IF) \( \nabla \varphi = (\varphi_x, \varphi_y) \).

The input images are first filtered through an extended 2-D Hilbert filter. The output is then processed through a dyadic filterbank. Current applications (see for example [1, 3–5]) use separable filters grouped by frequency scales (see Fig. 1a). Then, the AM-FM demodulation is applied at the output of each bandpass filter. At each pixel, the AM-FM estimate with the largest value of the IA is selected. Thus, the approach is to basically to apply dominant
component analysis (DCA) within each group of filters (see [6] for DCA).

The AM-FM demodulation algorithm is summarized as: using the output of each bandpass filter, we estimate the IA and IF using:

\[ \hat{\alpha}(k_1, k_2) = \left| \hat{I}_{AS}(k_1, k_2) \right| \] and \( \hat{\varphi}(k_1, k_2) = \arctan(\text{imag}(\hat{I}_{AS}(k_1, k_2)) / \text{real}(\hat{I}_{AS}(k_1, k_2))) \), respectively, with \( \hat{I}_{AS}(k_1, k_2) = I(k_1, k_2) + j\hat{H}_{2d}(I(k_1, k_2)) \), where \( \hat{H}_{2d} \) denotes a two-dimensional extension of the one-dimensional Hilbert transform operator. For robust IA and IF estimations, a variable \( s \) pacing, the second component direction \( \hat{\varphi}(k_1, k_2) \) is evaluated independently for filters. However, when a non-separable filterbank is used, the optimization from (3) cannot be solved independently for \( \hat{\varphi}_x \) and \( \hat{\varphi}_y \).

Let’s consider the filterbank shown in Fig. 1b. This filterbank follows the idea of the fan and directional filters described in [18]. For the 2D problem, let’s analyze only 1 filter as shown in Fig. 1c. The region labeled as \( A \) indicates the support of the bandpass filter within a range of instantaneous frequencies \( (\hat{\varphi}_x, \hat{\varphi}_y) \) for both directions at the same time.

For the variable spacing optimization used by the VS-LLP method we analyze both \( x \) and \( y \) directions at the same time. We consider

\[ \min_{\hat{\varphi}_x, \hat{\varphi}_y} \left( |\gamma_{\arccos}(n_1)| + |\gamma_{\arccos}(n_2)| \right) \]

subject to \( (\hat{\varphi}_x, \hat{\varphi}_y) \in A \).

where \( \gamma_{\arccos}(n_1) \) was defined in the previous subsection, \( \gamma_{\arccos}(n_2) = \left( \hat{I}_{AS}(k_1, k_2 + n_2) + \hat{I}_{AS}(k_1, k_2 - n_2) \right) / \left( 2\hat{I}_{AS}(k_1, k_2) \right) \), and \( A \) is considered to be the region of the bandpass filter. In this case (see Fig. 1c), the region \( A \) is composed by the frequencies with angle \( \theta \in [\xi - \Delta \xi, \xi + \Delta \xi] \) and with radius \( \rho \in [\wp_{p1}, \wp_{p2}] \). Note that \( \gamma(n_1) \) and \( \gamma(n_2) \) are the argument of the trigonometric functions for computing \( (\hat{\varphi}_x, \hat{\varphi}_y) \) (see (2)).

2.2. Proposed AM-FM estimation for non-separable filters

The method described in subsection 2.1 is producing good results in many applications such as [3–5,14]. However, when a non-separable filterbank is used, the optimization from (3) cannot be solved independently for \( \hat{\varphi}_x \) and \( \hat{\varphi}_y \).

Let’s consider the filterbank shown in Fig. 1b. This filterbank follows the idea of the fan and directional filters described in [18]. For the 2D problem, let’s analyze only 1 filter as shown in Fig. 1c. The region labeled as \( A \) indicates the support of the bandpass filter within a range of instantaneous frequencies \( (\hat{\varphi}_x, \hat{\varphi}_y) \) for both directions at the same time.

For the variable spacing optimization used by the VS-LLP method we analyze both \( x \) and \( y \) directions at the same time. We consider

\[ \min_{\hat{\varphi}_x, \hat{\varphi}_y} \left( |\gamma_{\arccos}(n_1)| + |\gamma_{\arccos}(n_2)| \right) \]

subject to \( (\hat{\varphi}_x, \hat{\varphi}_y) \in A \).

where \( \gamma_{\arccos}(n_1) \) was defined in the previous subsection, \( \gamma_{\arccos}(n_2) = \left( \hat{I}_{AS}(k_1, k_2 + n_2) + \hat{I}_{AS}(k_1, k_2 - n_2) \right) / \left( 2\hat{I}_{AS}(k_1, k_2) \right) \), and \( A \) is considered to be the region of the bandpass filter. In this case (see Fig. 1c), the region \( A \) is composed by the frequencies with angle \( \theta \in [\xi - \Delta \xi, \xi + \Delta \xi] \) and with radius \( \rho \in [\wp_{p1}, \wp_{p2}] \). Note that \( \gamma(n_1) \) and \( \gamma(n_2) \) are the argument of the trigonometric functions for computing \( (\hat{\varphi}_x, \hat{\varphi}_y) \) (see (2)).

2.3. Multiscale Directional Filterbank

We use a multiscale directional filterbank implementation similar to Figs. 1b-c. The filters are generated in two steps: (i) we implement the circular filters first and then, (ii) we implement the directional filters.

First, based on the optimized 1D filter design (see [1,2]), we produce 2D filters using a frequency transformation from 1D to 2D filters.

![Fig. 1](image-url)
generate a frequency mask \( M_p(\rho, \theta) \) such that (in polar coordinates):
\[
M_p(\rho, \theta) = \begin{cases}
1, & \xi - \Delta \xi \leq \theta \leq \xi + \Delta \xi, \\
0, & \theta < \xi - \Delta \xi - \Delta \xi, \\
0, & \theta > \xi + \Delta \xi + \Delta \xi, \\
g_{-\frac{1}{2}N}^{-\frac{1}{2}N} \frac{\xi - \Delta \xi - \Delta \xi - \Delta \xi}{\Delta \xi}, & \xi - \Delta \xi - \Delta \xi \leq \theta < \xi - \Delta \xi, \\
\frac{\xi + \Delta \xi + \Delta \xi + \Delta \xi}{\Delta \xi}, & \xi + \Delta \xi < \theta \leq \xi + \Delta \xi + \Delta \xi.
\end{cases}
\]

This function produces a linear change from 0 to 1 in the transition bands defined by \( \Delta \xi \). To reduce the ringing problem in the design, we apply a \( 3 \times 3 \) Gaussian filter \( G(u, v) \) to the mask: \( M(u, v) = M_p(u, v) \ast G(u, v) \) \((\text{where } M_p(u, v) \text{ is } M_p(\rho, \theta) \text{ in cartesian coordinates})\). Then, the directional filter is oriented at \( \xi \) and \( \rho, \theta \) shown in [1] for the noise-free synthetic signal described before.

We compare the results of the proposed method with the results filterbanks described in subsection 3.1.

3. RESULTS AND DISCUSSION

3.1. Parameters used in the filterbank

We use both a 2-scale and a 3-scale filterbank designed based on Figs. 1b-c. The orientations for the directional filterbanks are \( \xi = 0, 30, 60, 90, 120, 150^\circ \) with an expansion of \( \Delta \xi = 20^\circ \) and a transition band of \( \delta \xi = 10, 20^\circ \).

The circular frequency scales follow the cut-off frequencies shown in Fig. 1a: \([0, \pi/4, \pi/2, \pi]\) and \([0, \pi/8, \pi/4, \pi/2, \pi]\) for a 2-scale and a 3-scale filterbank, respectively.

3.2. Images used

To test the accuracy of the proposed method, we use the Gaussian amplitude-modulated Quadratic frequency-modulated synthetic image used in [1]. This signal is defined as: \( I(k_1, k_2) = 100 \exp \left[ -\frac{1}{2} \alpha^2 \left( \frac{k_1 + \frac{1}{2}}{N} \right)^2 + \left( \frac{k_2 + \frac{1}{2}}{N} \right)^2 \right] \cos \varphi(k_1, k_2) \) for \( k_1, k_2 = -N, \ldots, N - 1, \alpha = 2.5 \) and \( N = 1024 \). The phase with \( \varphi_\alpha(k_1, k_2) \in [\pi/6, \pi/5] \) and \( \varphi_\beta(k_1, k_2) = -\varphi_\alpha(k_1, k_2) \).

Also, we use a natural image of a zebra (see Fig. 2a) to show the potential use of the directional analysis using AM-FM methods. We picked up a zebra due to the nice multiscale directional structures that it has in its stripes.

3.3. Multiscale Directional AM-FM demodulation

We compare the results of the proposed method with the results shown in [1] for the noise-free synthetic signal described before. In Table 1 we show the mean-squared-error (MSE) results for the IA and IF in the x-direction (the results for y are similar) using the filterbanks described in subsection 3.1.

In Fig. 2, we present the analysis of the AM-FM demodulation of the zebra using a 3-scale filterbank with \( \delta \xi = 10 \). We show the FM results using the lowpass filter (LPF, filter 1 in Fig. 1b) in Fig. 2b and using the low-high frequencies in Figs. 2c-h in orientations at \( 0^\circ, 30^\circ, 60^\circ, 90^\circ, 120^\circ, \) and \( 150^\circ \). The FM images have been thresholded using the mean of the IA (high IA values).

3.4. Discussion

We can see from Table 1 that the proposed method produced better results than those currently used as state-of-the-art such as [1, 22]. The use of more scales (3-scales compared to 2-scales) always implies more accurate estimations. This effect is observed for both the IA and the IF estimations, for any method: the proposed 2D optimized VS-LLP, the quasi-eigenfunction approximation (QEA) method from [22], and the VS-LLP from [1].

One important factor is the bigger the transition band of \( \delta \xi \), the better the results. Also, note that we are using a bigger overlapping of the bandpass filters in terms of the directions. Each directional filter is oriented at \( \xi \pm 20^\circ \) with \( \xi = 0, 30, 60, 90, 120, 150^\circ \). This implies that for 2 continuous directions, for example \( \xi = 0^\circ \) and \( \xi = 30^\circ \), the direction for \( \xi = 0^\circ \) covers the angle range \([-20^\circ, 20^\circ]\) and the direction for \( \xi = 30^\circ \) covers \([10^\circ, 50^\circ]\). Thus, there is an overlapping of \( 10^\circ \) for each continuous direction (we are considering only the passband frequencies and not the transition band \( \delta \xi \)). We can assume here that the filterbank used for the circular frequency scales with the cut-off frequencies shown in Fig. 1a (see [1,5]) with almost not overlapping could be improved to find an optimum value of frequency overlapping.

The IF results of the proposed method are in the range of \([1.6, 4.9]\) times better than QEA and [1,3,3.8] better than the non-2D-optimized VS-LLP method from [1]. The IA results were improved in 3 order of magnitude compared to the other methods. Here both QEA and VS-LLP from [1] produced the same results. Note that we have used the separable filterbanks (see Fig. 1a) for the QEA and VS-LLP results reported in [1].

When we applied the multiscale directional AM-FM analysis to a natural image of a zebra (see Fig. 2a) the results are promising. First, we can see in Fig. 2b that the AM-FM estimation in the LPF of the 3-scale filterbank produces a description of the very low information of the stripes in all directions in the FM. Then, when we do the analysis without the LPF (low, medium and high frequencies together) and using independent directions, we can see how for each directional filter (remember that each direction covers \([\pm 20^\circ]\)) different structures of the stripes are selected. This approach can be used for applications were direction matters or for decomposition of image information by both orientations and scales at the same time.
Table 1. Results in terms of the MSE for the IA and the IF estimations for the Gaussian amplitude-modulated Quadratic frequency-modulated synthetic image described in subsection 3.2. We compare the results from the proposed method (columns 6–9) versus the results published in [1] for the VS-LLP method and the QEA. 2-s and 3-s are 2-scale and 3-scale filterbank, respectively. $\delta \xi$ is the transition band used in the directional filter.

<table>
<thead>
<tr>
<th></th>
<th>2-s QEA</th>
<th>3-s QEA</th>
<th>2-s from [1]</th>
<th>3-s from [1]</th>
<th>2-s, $\delta \xi = 10$</th>
<th>2-s, $\delta \xi = 20$</th>
<th>3-s, $\delta \xi = 10$</th>
<th>3-s, $\delta \xi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>0.035</td>
<td>0.033</td>
<td>0.035</td>
<td>0.033</td>
<td>0.890 $\times 10^{-8}$</td>
<td>0.812 $\times 10^{-8}$</td>
<td>0.23 $\times 10^{-8}$</td>
<td>0.20 $\times 10^{-8}$</td>
</tr>
<tr>
<td>IF</td>
<td>2.34 $\times 10^{-8}$</td>
<td>1.45 $\times 10^{-8}$</td>
<td>2.45 $\times 10^{-8}$</td>
<td>1.11 $\times 10^{-8}$</td>
<td>1.257 $\times 10^{-8}$</td>
<td>1.036 $\times 10^{-8}$</td>
<td>0.885 $\times 10^{-8}$</td>
<td>0.294 $\times 10^{-8}$</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

We have developed a new, 2D optimized formulation for AM-FM estimations to be applied with non-separable filters. We have also introduced the analysis of the AM-FM estimates computed by different frequency scales and by different directions.

The results are improved up to 4.9 times for the IF estimation and in 3 orders of magnitude for the IA estimation for the Gaussian amplitude-modulated Quadratic frequency-modulated synthetic image used.

The proposed method shows promising results for the analysis of images rich in multiscale and directional structures.

The new multiscale directional design presents two major advantages: (i) the filters capture not only the spatial but also the directionality of an image structure, (ii) one of the features used is the IF magnitude, for a fixed scale, using the filterbank from Fig. 1a, we don’t have a constant range but with the new design, the range will be constant from $w_{p1}$ to $w_{p2}$.

5. REFERENCES